CETIFICATION

SDG No:

MC46423

Humacao, PR

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY: G

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken July 13-16, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC46423. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC46423-1	S-33	Groundwater	Volatiles TPHC Ranges
MC46423-1A	S-33	Groundwater	Extractable TPHC Ranges
MC46423-2	S-34	Groundwater	Volatiles TPHC Ranges
MC46423-2A	S-34	Groundwater	Extractable TPHC Ranges
MC46423-3	G-1R3	Groundwater	Volatiles TPHC Ranges
MC46423-3A	G-1R3	Groundwater	Extractable TPHC Ranges
MC46423-4	E-1R	Groundwater	Volatiles TPHC Ranges
MC46423-4A	E-1R	Groundwater	Extractable TPHC Ranges
MC46423-5	D-1R	Groundwater	Volatiles TPHC Ranges
MC46423-5A	D-1R	Groundwater	Extractable TPHC Ranges
MC46423-6	MW-19	Groundwater	Volatile TPHC Ranges
MC46423-6A	MW-19	Groundwater	Extractable TPHC Ranges

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC46423-7	MW-22S	Groundwater	Volatile TPHC Ranges
MC46423-7A	MW-22S	Groundwater	Extractable TPHC Ranges

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 16, 2016

Dafael Infante
Méndez
LIC # 1888

A 1591651

Report of Analysis

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID: MC46423-1

Matrix:

Project:

AQ - Ground Water

Method:

MADEP VPH REV 1.1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled:

06/13/16 Date Received: 06/17/16

Percent Solids:

File ID DF Analyzed Prep Date **Analytical Batch** By Prep Batch Run #1 WX77172.D 06/20/16 1 AF n/a GWX3796 n/a

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

Volatile TPHC Ranges

CAS No. Compound Result RLMDL Units Q C5- C8 Aliphatics (Unadj.) 30.9 50 J 25 ug/l C9- C12 Aliphatics (Unadj.) 72.3 50 25 ug/I C9- C10 Aromatics (Unadj.) 50.0 50 25 ug/I C5- C8 Aliphatics ND 50 25 ug/I C9- C12 Aliphatics ND 50 25 ug/l CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 2,3,4-Trifluorotoluene 98% 70-130% 2,3,4-Trifluorotoluene 101% 70-130%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID:

MC46423-1A

AQ - Ground Water

Date Sampled: 06/13/16 06/17/16

Date Received:

Method: Project:

Matrix:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids:

BMSMC, Building 5 Area, Puerto Rico

Run #1

DF Analyzed 1 06/30/16

By TA Prep Date 06/27/16

Prep Batch **OP47988**

Analytical Batch GDE820

Run #2

Run #1

Run #2

Initial Volume

950 ml

File ID

DE14765.D

Final Volume 2.0 ml

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	33.2	110	30	ug/l	JB
	C9-C18 Aliphatics	20.6	110	18	ug/l	J
	C19-C36 Aliphatics	32.9	110	29	ug/l	J
	C11-C22 Aromatics	32.6	110	30	ug/l	JB
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	45%	40-140%			
321-60-8	2-Fluorobiphenyl	70%	40-140%			
3386-33-2	1-Chlorooctadecane	43%	40-140%			
580-13-2	2-Bromonaphthalene	77%	40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

11 of 811 **ACCUTEST** MC46423

Report of Analysis

By

AF

Page 1 of 1

Client Sample ID: S-34

Lab Sample ID:

MC46423-2

Matrix:

AQ - Ground Water

MADEP VPH REV 1.1

DF

1

Analyzed

06/20/16

Date Sampled: Date Received:

06/13/16 06/17/16

Percent Solids:

Q

n/a

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Prep Date

n/a

Prep Batch n/a

Analytical Batch GWX3796

Run #1 Run #2

Purge Volume

WX77173.D

Run #1

5.0 ml

File ID

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units
	C5- C8 Aliphatics (Unadj.)	ND	50	25	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	25	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	25	ug/l
	C5- C8 Aliphatics	ND	50	25	ug/l
	C9- C12 Aliphatics	ND	50	25	ug/I
CACN	Orange December	N # 4	7 0#		•.

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
	2,3,4-Trifluorotoluene	94%		70-130%
	2.3.4-Triffuorotoluene	9696		70-13094

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

TA

Prep Date

06/27/16

Page 1 of 1

Client Sample ID: S-34

Lab Sample ID:

MC46423-2A

Matrix:

AQ - Ground Water

DF

1

MADEP EPH REV 1.1 SW846 3510C

Date Sampled: Date Received:

06/13/16 06/17/16

GDE820

Percent Solids: n/a

OP47988

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

06/30/16

Prep Batch **Analytical Batch**

Run #1

Run #2

Initial Volume Final Volume

920 ml

File ID

DE14766.D

2.0 ml

Run #1

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	34.2	110	31	ug/l	JB
	C9-C18 Aliphatics	22.7	110	18	ug/l	J
	C19-C36 Aliphatics	40.9	110	29	ug/l	Ī
	C11-C22 Aromatics	34.2	110	31	ug/l	JB
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-I	o-Terphenyl	63%		40-1	40%	
321-60-8	2-Fluorobiphenyl	71%		40-1	40%	
3386-33-2	1-Chlorooctadecane	63%		40-1	40%	
580-13-2	2-Bromonaphthalene	78%		40-1	40%	
	-					1.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

G-1R3 MC46423-3

Matrix: Method:

AQ - Ground Water

MADEP VPH REV 1.1

Date Sampled: 06/15/16 Date Received:

06/17/16 Percent Solids:

Project:

BMSMC, Building 5 Area, Puerto Rico

							
1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	WX77174.D	1	06/20/16	AF	n/a	n/a	GWX3796
Run #2	WX77180.D	100	06/20/16	AF	n/a	n/a	GWX3796

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	167 63100 ^a 112 67.1 753	50 5000 50 50 50	25 2500 25 25 25	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	106% 108%	90% 94%	70-1 70-1		

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

TA

Prep Date

06/27/16

Page 1 of 1

Client Sample ID: Lab Sample ID:

G-1R3

MC46423-3A

Date Sampled:

06/15/16

GDE820

Matrix:

AQ - Ground Water

DF

I

Date Received:

06/17/16

Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

OP47988

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

06/30/16

Analytical Batch Prep Batch

Run #1

Run #2

Initial Volume 935 ml

File ID

DE14767.D

Final Volume 2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	36.4	110	31	ug/l	JΒ
	C9-C18 Aliphatics	25.8	110	18	ug/I	Ĭ
	C19-C36 Aliphatics	96.7	110	29	ug/l	Ī
	C11-C22 Aromatics	36.4	110	31	ug/l	ĴΒ
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	51%		40-1	40%	
321-60-8	2-Fluorobiphenyl	72%		40-1	40%	
3386-33-2	1-Chlorooctadecane	60%		40-1	40%	
580-13-2	2-Bromonaphthalene	78%		40-1	40%	
	-					

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: E-1R

Lab Sample ID:

MC46423-4

Matrix: Method: AQ - Ground Water

DF

1

MADEP VPH REV 1.1

Date Sampled: Date Received:

06/15/16

06/17/16

Percent Solids:

Project:

BMSMC, Building 5 Area, Puerto Rico

Prep Batch

Analytical Batch

Run #1 Run #2

Analyzed 06/20/16

By ΛF Prep Date n/a

MDL

25

Units

n/a

Q

J

J

GWX3796

Purge Volume

WX77179.D

Run #1

5.0 ml

File ID

Run #2

Volatile TPHC Ranges

CAS No. Compound Result RL C5- C8 Aliphatics (Unadj.) 36.4 50

ug/l C9- C12 Aliphatics (Unadj.) 55.4 50 25 ug/I C9- C10 Aromatics (Unadj.) ND 50 25 ug/l C5- C8 Aliphatics 27.7 50 25 ug/l C9- C12 Aliphatics ND 50 25 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

> 2,3,4-Trifluorotoluene 91% 70-130% 2,3,4-Trifluorotoluene 94% 70-130%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

TA

Page 1 of 1

Client Sample ID: E-1R

File ID

970 ml

DE14768.D

Lab Sample ID:

SGS Accutest

MC46423-4A

Matrix: Method: AQ - Ground Water

DF

1

MADEP EPH REV 1.1 SW846 3510C

Date Sampled:

06/15/16

Date Received: 06/17/16

Prep Date

06/27/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

06/30/16

Prep Batch **Analytical Batch OP47988 GDE820**

Run #1 Run #2

Initial Volume Final Volume

Run #1 Run #2

 $2.0 \, ml$

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	60.6	100	30	ug/l	JB
	C9-C18 Aliphatics	22.7	100	17	ug/I	J
	C19-C36 Aliphatics	46.6	100	28	ug/l	J
	C11-C22 Aromatics	32.4	100	30	ug/l	JB
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	61%		40-1	40%	
321-60-8	2-Fluorobiphenyl	67%		40-1	40%	
3386-33-2	1-Chlorooctadecane	64%		40-1	40%	
580-13-2	2-Bromonaphthalene	74%		40-1	40%	

MDL = Method Detection Limit

ACCUTEST

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: D-1R

Lab Sample ID:

MC46423-5

Matrix:

AQ - Ground Water

Date Sampled: Date Received:

06/15/16

MADEP VPH REV 1.1

Percent Solids:

06/17/16

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

File ID DF By Analyzed Prep Date Prep Batch **Analytical Batch** Run #1 WX77176.D 1 06/20/16 AF GWX3796 n/a

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	ND	50	25	ug/l	
	C9- C12 Aliphatics (Unadj.)	ND	50	25	ug/l	
	C9- C10 Aromatics (Unadj.)	ND	50	25	ug/l	
	C5- C8 Aliphatics	ND	50	25	ug/l	
	C9- C12 Aliphatics	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene	90%		70-1	30%	

2,3,4-Trifluorotoluene 93% 70-130%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: D-1R

Lab Sample ID:

MC46423-5A

Matrix: Method:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

Date Sampled: Date Received:

06/15/16

06/17/16

BMSMC, Building 5 Area, Puerto Rico

Percent Solids: n/a

Run #1

Project:

File ID DE14769.D

DF Analyzed 1 06/30/16

By Prep Date TA 06/27/16

Prep Batch **OP47988**

Analytical Batch GDE820

Run #2

Initial Volume **Final Volume** 940 ml

Run #1 Run #2

2.0 ml

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND 20.8 33.7 ND	110 110 110 110	30 18 29 30	ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	42% 67% 43% 74%		40-14 40-14 40-14 40-14	40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

ΑF

AF

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-19

MC46423-6

Date Sampled:

06/16/16

Matrix:

AQ - Ground Water

DF

1

50

Date Received:

06/17/16

Method:

MADEP VPH REV 1.1

Percent Solids: n/a

n/a

n/a

Q

J

J

Prep Batch

Project:

Run #1

BMSMC, Building 5 Area, Puerto Rico

Analyzed

06/20/16

06/20/16

Prep Date

70-130%

n/a

n/a

Analytical Batch GWX3796

GWX3796

Run #1	WX77177.D
Run #2	WX77181.D
	Durge Volum

File ID

Purge Volume 5.0 ml

5.0 ml Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	27.2 19500 ^a 100 26.3 65.3	50 2500 50 50 50	25 1300 25 25 25	ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
	2,3,4-Trifluorotoluene	93%	91%	70-1	30%

96%

95%

(a) Result is from Run# 2

2,3,4-Trifluorotoluene

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-19 MC46423-6A

Matrix:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

Date Sampled:

06/16/16

Date Received: 06/17/16

Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Run	#1
Run	#2

File ID DE14770.D DF Analyzed 06/30/16

By TA

Prep Date 06/27/16

Prep Batch **OP47988**

Analytical Batch GDE820

Initial Volume

940 ml

Final Volume 2.0 ml

1

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	85.3	110	30	ug/l	JB
	C9-C18 Aliphatics	72.7	110	18	ug/l	J
	C19-C36 Aliphatics	37.3	110	29	ug/l	J
	C11-C22 Aromatics	78.4	110	30	ug/l	JВ
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	51%		40-1	40%	
321-60-8	2-Fluorobiphenyl	64%		40-1	40%	
3386-33-2	1-Chlorooctadecane	48%		40-1	40%	
580-13-2	2-Bromonaphthalene	67%			40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

AF

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-22S MC46423-7

Matrix:

AQ - Ground Water

Method: Project:

MADEP VPH REV 1.1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled:

06/16/16 Date Received: 06/17/16

Percent Solids:

1

File ID DF Analyzed By

Prep Date Prep Batch **Analytical Batch** GWX3796 n/a n/a

Run #1 Run #2

Purge Volume

WX77182.D

Run #1

5.0 ml

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5-C8 Aliphatics (Unadj.)	ND	50	25	ug/l	
	C9- C12 Aliphatics (Unadj.)	ND	50	25	ug/l	
	C9- C10 Aromatics (Unadj.)	ND	50	25	ug/l	
	C5- C8 Aliphatics	ND	50	25	ug/l	
	C9- C12 Aliphatics	ND	50	25	ug/I	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

06/20/16

2,3,4-Trifluorotoluene 90% 70-130% 2,3,4-Trifluorotoluene 94% 70-130%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

TA

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-22S MC46423-7A

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 06/16/16 Date Received: 06/17/16

Method: Project:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

BMSMC, Building 5 Area, Puerto Rico

Run #1 Run #2 File ID DE14771.D

Analyzed 06/30/16

Prep Date 06/27/16

Prep Batch **OP47988**

Analytical Batch GDE820

Initial Volume 920 ml

Final Volume 2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	39.1	110	31	ug/l	JB
	C9-C18 Aliphatics	19.9	110	18	ug/l	J
	C19-C36 Aliphatics	59.6	110	29	ug/l	J
	C11-C22 Aromatics	39.1	110	31	ug/l	JB

	OTT OLD /HOHMICS	33.1	110	or ug/
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	60%		40-140%
321-60-8	2-Fluorobiphenyl	67%		40-140%
3386-33-2	1-Chlorooctadecane	65%		40-140%
580-13-2	2-Bromonaphthalene	74%		40-140%

23 of 811

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS ACCI	TPOT		CHAI	N ()F (CUS'	TΟ	DY VE	اورا	k4	d	ā	099	L05	P5	870	_					OF <u>/</u>
ACCU	TEST		22364 TEL 732-32	9-0200	FAX:	12-329-	1499/	20	8	'A	ngdo	, -	1 1				ľ	138 An	2404 Car 2404 Car	<u> </u>	CHE	6423
Client / Reporting Information	E		Project	Series III	accules.	com AA	aci	be c	- 04	A	wift.		Star		d Am	Andre 6	see TE			#rox	<u>r NJ</u>	A Service de Ann
Anderson Molholland Assoc Inc	Project Home:	15																31 6				Matrix Codes OW - Denting Water
2700 Westchester	Street	12										-										GW - Ground Water WW - Water
Dunch of NV	91.	9040	<u>م</u> ري		Leformali ny Fiamo	(II est	forgung S	ryan (fic	port la	0)		1										SW - Surince Wate SO - Soil SL- Shatge
Princt Contact E-real	HUM	9040	PK_	Street /	difrees					_		-		H								SED-Sadmani DI- DI LIQ- Other Legad
LELVA LANIOL	Chart Pyrches	Order If		Cay				-		_	20	7	H'K	$ \ $							İ	AR - Ar SOL - Other Sons
9 14 - 25) -0400 Somewhat Nampara	Prosect Manage											1	PH	ĺ								WP - Wps PB-Field Blank EB-Equatrient Blank
Nestor M. Rivera	7.00.				A .							7	M									RB- Rines Blank TB-Trip Blank
144	1		Cathodian		1		Н		Z	1	- 7	ξ	2.0									
Field ID / Point of Collection	(4D+0) 44	Days .	Ten	Per .	Marrie		₽		ğ ğ	ă	₫ <u>₽</u>	>	0			Ш				Ш	\perp	LAB USE CNLY
-1 5-33 -2 5-34	-	6/13/16		KM	Gw	4	4	+	- -	Н	-	X	×					_			+	
-si G-183		6/13/16	1305		GW GW	1	4	╫	╬	Н	++	X	×					-			+	
-/ E-IR		6/15/16	1442	NAR	GW	4	4	††	1	П	- - -	×	×		-	Н		7	-			
D-IR		6/15/14	1716	NA	GW	4	4	П				X	X								土	190
-c MW-19 -7 MW-225		6/16/16	1322		GW GW	4	4	₩	+	Н	+	Ϋ́	X					_			\perp	17
F(W ZZZ		CALLE TO	1766	Mark	SIV	4_	1	╫	+	Н	+	X	X		_		\dashv	\dashv	-	\vdash		<u> </u>
							11	\Box	_	#	11		\vdash		_	\vdash	\dashv	┪			-	
							П	П	T	П					_							
-			 		_	_	Н	₩	+	H	++-						_ -	_	_	Щ.	_	
Tunnament Tens (Business (ays)		[Deba	Delive	ratile l	ntarm							959	Comme	rets / J	Boncia	Phartics	dha ==	
201. 10 Business Days	Approved By (1883	Actualizat Phily / Dans			Canamaro Canamaro					4	ASP Categ	•		11	NITH	AL AS	ESSM	ENI	عبيب. ا	1//		
\$ Day RUSM			i		FULLT1 (NJ Reduc		41			,	të Ferma D Fermat	·		L	ABE	LVE	RIFICA	1110	IN	17_		
1 Day RUSH				_	Gammarc AU Dess					j ou		_	_									
Emergency & Ruen TA date a reliable VA Laptice.					pel "A" = I	Named a Co	dy, Con	er e	1787=	Reeu	4a + DE 8s	y		_					_			91
4 . /	8.	mple Custody m		anted b	ices = R.s Sign eac	ndin + CIC h Sirina au	Synn	chan	what R go por	1965 1965	ne Lion, inch	ding c	purier	delivery	r	9	is vert	hed u	Jpon i	receipt	n the La	iboratory.
· Moon of Church GIG	16 1900	Fed	EX_				2	/	Fc	2	the	_			6/1	116	2		l By	1	12	
Sheeparded by Constitute Constitute		3					Retine 4		lyt .		7				lete The	4			10/7		/	
Refrequented by: Code Time:		Received By 5					7	32,	73	4	0	Head Dell comm	1			-	•			7	2.4	51.80

MC46423: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

MC46423

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP VPH

Number of Samples:

7

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for Volatiles TPHC Ranges by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 16, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC46423-1

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016

Matrix: AQ - Equipment Blank

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	30.9	ug/L	1	J	UJ	Yes
Ç9 - C12 Aliphatics (Unadj.)	72.3	ug/L	1	-	•	Yes
Ç9 - C10 Aromatics (Unadj.)	50.0	ug/L	1	-	•	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC46423-2

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016
Matrix: Groundwater

Analyte Name	Result	Units Di	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	•	U	Yes

Sample ID: MC46423-3

Sample location: BMSMC Building 5 Area

Sampling date: 6/15/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	167	ug/L	1	-	•	Yes
Ç9 - C12 Aliphatics (Unadj.)	63100	ug/L	100	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	112	ug/L	1	-	-	Yes
Ç5 - C8 Aliphatics	67.1	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics	753	ug/L	1	-	-	Yes

Sample ID: MC46423-4

Sample location: BMSMC Building 5 Area

Sampling date: 6/15/2016

Matrix: Groundwater

Analyte Name	Result	Units E	Dilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	36.4	ug/L	1	J	UJ	Yes
Ç9 - C12 Aliphatics (Unadj.)	55.4	ug/L	1	-	i.e	Yes
Ç9 - C10 Aromatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç5 - C8 Aliphatics	27.7	ug/L	1	1	UJ	Yes
C9 - C12 Aliphatics	50	ue/L	1	_	U	Yes

Sample ID: MC46423-5

Sample location: BMSMC Building 5 Area

Sampling date: 6/15/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	50	ug/L	1	•	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC46423-6

Sample location: BMSMC Building 5 Area

Sampling date: 6/16/2016

Matrix: Groundwater

Analyte Name	Result	Units 0	Dilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	27.2	ug/L	1	J	IJ	Yes
Ç9 - C12 Aliphatics (Unadj.)	19500	ug/L	1	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	100	ug/L	1	-	-	Yes
Ç5 - C8 Aliphatics	26.3	ug/L	1	J	UJ	Yes
Ç9 - C12 Aliphatics	65.3	ug/L	1	-	-	Yes

Sample ID: MC46423-7

Sample location: BMSMC Building 5 Area

Sampling date: 6/16/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	50	ug/L	1	-	UJ	Yes
Ç9 - C12 Aliphatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç9 - C10 Aromatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

DATA REVIEW WORKSHEETS

Type of validation Full:_X Limited:	Project Number:_MC46423
REVIEW OF VOLATILE PETROLEUM	M HYDROCARBON (VPHs) PACKAGE
validation actions. This document will assist the more informed decision and in better serving to were assessed according to the data validation precedence METHOD FOR THE DETE HYDROCARBONS (VPH), Massachusetts Depart (2004). Also the general validation guidelines	te organics were created to delineate required reviewer in using professional judgment to make the needs of the data users. The sample results in guidance documents in the following order of RMINATION OF VOLATILE PETROLEUM artment of Environmental Protection, Revision 1.1 promulgated by the USEPA Hazardous Wastes ation actions listed on the data review worksheets to otherwise noted.
The hardcopied (laboratory name) _Accutes received has been reviewed and the quality con review for SVOCs included:	t_Laboratories data package trol and performance data summarized. The data
Lab. Project/SDG No.:MC46423	
X Data CompletenessX Holding TimesN/A GC/MS TuningN/A Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X_ Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Overall Comments: _Volatiles_ (C5_to_C12_Aliphatics;_C9_to_C10_Aromatics)	_by_GC_by_Method_MADEP_VPH,_REV_1.1
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated numbered Reviewer: Aau avaut Date:_07/16/2016	

	Criteria were not r	All criteria were metx met and/or see below
I. DATA COMPLETNE A. Data Packag		
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
3. Other		Discrepancies:

All criteria were metX
Criteria were not met and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
	<u>. </u>			
Sa	amples analyzed	within method re-	commended holdi	ng time
			_	
				<u>,</u>

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (Criteria: 4 ± 2 °C):2.5°C	er temperature	(Criteria:	4 + 2 °C):	2.5°C	
---	----------------	------------	------------	-------	--

Actions: Qualify positive results/non-detects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Crite	All criteria eria were not met and/o	a were metX or see below			
CALIBRAT	IONS VERIFIC	ATION					
ensure that	Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.						
Date of initial calibration:06/02/16							
Dates of initial calibration verification:06/02/16_							
Instrument ID numbers:GCWX							
Matrix/Level:AQUEOUS/MEDIUM							
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED			
Initial and initial calibration verification meet method specific requirements							

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the
 average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9-C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It

DATA REVIEW WORKSHEETS

should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	06/09/16
Dates of continuing calibration	verification:_06/20/16
Dates of final calibration verific	ation:06/21/16
Instrument ID numbers:	GCWX
Matrix/Level:AQ	UEOUS/MEDIUM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED		
Continuing and final calibration verification meet method specific requirements						

A separate worksheet should be filled for each initial curve

				All criteria were metX_ met and/or see below	
VA. BLANK	ANALYSIS R	ESULTS (Se	ctions 1 & 2)		
magnitude of comproblems with evaluated to decase, or if the	ontamination ted with the sany blanks etermine whet problem is an must be run	problems. The samples, included in the samples included in the sample after sample after sample in the sample in t	ne criteria for evaluding trip, equipma associated with ere is an inherendarrence not affects suspected of I	etermine the existence are uation of blanks apply only lent, and laboratory blanks the case must be careful variability in the data for the time other data. A Laborato being highly contaminated	to li lly ne ry
List the contam separately.	nination in the	blanks belo	w. High and low	evels blanks must be treate	Э С
Laboratory blan	ıks				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
METHOD BL		THE METHO		ITERIA	
	nent sample			hould continually accompar spectively, during samplin	
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_NO_TRIP/FIEI _PACKAGE	LD/EQU{PME	NT_BLANKS	S_ASSOCIATED_	WITH_THIS_DATA	

DATA REVIEW WORKSHEETS

All criteria were metX
Criteria were not met and/or see below

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met	X
Criteria were not met and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture):
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met	X
Criteria were not met and/or see below_	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria Sample ID:_MC46423-7_MS/MSD______ Matrix/Level:_Groundwater_____ List the %Rs, RPD of the compounds which do not meet the QC criteria. MS OR MSD COMPOUND % R RPD QC LIMITS ACTION

Note: MS/MSD % recoveries and RPD within laboratory control limits.

All	criteria were met _	_x
Criteria were not met	and/or see below	

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

COMPOUND	CONCENTRAT SAMPLE	TION MS	MSD	%RPD	ACTION
		•••	 		
<u> </u>					
	**************************************	-	-		
	·				

Criteria: None specified, use %RSD < 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X
Criteria were not met and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION	
LCS_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS					

Criteria:

- * Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

		Crite	All criteria eria were not met and		metN/A below	
IX. FIELD/LA	BORATOR	Y DUPLICATE PR	ECISION			
Sample IDs:	Sample IDs:Matrix:					
Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.						
COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess accuracy. RPD within laboratory and validation guidance document criteria (+ 50 %) for analytes detected above reporting limits.						

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq 5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX_	
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH
 Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - o All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - o The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

		Crite		riteria were metX and/or see below
XII.	QUANTITATIO	ON LIMITS AND SAMPLE		
	•			
ine sa	ample quantitati	on evaluation is to verify la	aboratory quantita	tion results.
1.	In the space b	elow, please show a minir	num of one samp	le calculation:
MC46	423-3	VPH (C5 – C7 Alij	ohatics)	RF = 2.366 x 10 ⁴
FID				
[]=(2	4176)/(2.366 x	10 ⁴)		
[]=1.	02 ppb Ok			
MC46	423-1	VPH (C9 - C10 A	romatics)	$RF = 1.264 \times 10^4$
PID				
[]=(1	412289)/(1.264	× 10⁴)		
[]=1	11.7 ppb Ok			
2. limit (N		erify that the results were	e above the labor	ratory method detection
3.		rformed, were the SQLs ed samples and dilution fac		
	AMPLE ID	DILUTION FACTOR		FOR DILUTION
	6423-3 6423-6	100 X 50 X	C9 – C12 aliphoration	atic hydrocarbon range range
-				
_			I	
		erformed and the results reformed and the results referred compounds.		

EXECUTIVE NARRATIVE

SDG No:

MC46423

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP EPH

Number of Samples:

... 7

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for Extractable Petroleum Hydrocarbons TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 16, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC46423-1A

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	33.2	ug/L	1	JB	IJ	Yes
Ç9 - C18 Aliphatics	20.6	ug/L	1	J	UJ	Yes
Ç19 - C36 Aliphatics	32.9	ug/L	1	J	IJ	Yes
Ç11 - C22 Aromatics	32.6	ug/L	1	JB	UJ	Yes

Sample ID: MC46423-2A

Sample location: BMSMC Building 5 Area

Sampling date: 6/13/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	34.2	ug/L	1	JB	UJ	Yes
Ç9 - C18 Aliphatics	22.7	ug/L	1	J	UJ	Yes
Ç19 - C36 Aliphatics	40.9	ug/L	1	J	LU	Yes
Ç11 - C22 Aromatics	34.2	ug/L	1	JB	UJ	Yes

Sample ID: MC46423-3A

Sample location: BMSMC Building 5 Area

Sampling date: 6/15/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units (Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	36.4	ug/L	1	JB	UJ	Yes
Ç9 - C18 Aliphatics	25.8	ug/L	1	J	UJ	Yes
Ç19 - C36 Aliphatics	96.7	ug/L	1	J	UJ	Yes
Ç11 - C22 Aromatics	36.4	ug/L	1	JB	UJ	Yes

Sample ID: MC46423-4A

Sample location: BMSMC Building 5 Area

Sampling date: 6/15/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	60.6	ug/L	1	JB	LU	Yes
Ç9 - C18 Aliphatics	22.7	ug/L	1	J	LU	Yes
Ç19 - C36 Aliphatics	46.6	ug/L	1	J	LU	Yes
Ç11 - C22 Aromatics	32.4	ug/L	1	JB	UJ	Yes

Sample ID: MC46423-5A

Sample location: BMSMC Building 5 Area

Sampling date: 6/15/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	110	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	20.8	ug/L	1	J	UJ	Yes
Ç19 - C36 Aliphatics	33.7	ug/L	1	J	UJ	Yes
Ç11 - C22 Aromatics	110	ug/L	1	-	U	Yes

Sample ID: MC46423-6A

Sample location: BMSMC Building 5 Area

Sampling date: 6/16/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	85.3	ug/L	1	JB	UJ	Yes
Ç9 - C18 Aliphatics	72.7	ug/L	1	J	UJ	Yes
Ç19 - C36 Aliphatics	37.3	ug/L	1	J	UJ	Yes
Ç11 - C22 Aromatics	78.4	ug/L	1	JB	UJ	Yes

Sample ID: MC46423-7A

Sample location: BMSMC Building 5 Area

Sampling date: 6/16/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	39.1	ug/L	1	JB	UJ	Yes
Ç9 - C18 Aliphatics	19.9	ug/L	1	1	UJ	Yes
Ç19 - C36 Aliphatics	59.6	ug/L	1	J	UJ	Yes
C11 - C22 Aromatics	39.1	ug/L	1	JB	UJ	Yes

Type of validation Full:X Limited:	Project Number:_MC46423 Date:06/13-16/2016 Shipping date:06/16/2016 EPA Region:2
REVIEW OF EXTRACTABLE PETROLE	EUM HYDROCARBON (EPHs) PACKAGE
validation actions. This document will assist the more informed decision and in better serving to were assessed according to the data validation precedence METHOD FOR THE DETERN HYDROCARBONS (VPH), Massachusetts Depa (2004). Also the general validation guidelines Support Section. The QC criteria and data validation the primary guidance document, unless	
The hardcopied (laboratory name) _Accutes received has been reviewed and the quality con review for SVOCs included:	t_Laboratories data package trol and performance data summarized. The data
Lab. Project/SDG No.:MC46423	
X Data CompletenessX Holding TimesN/A GC/MS TuningN/A Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X_ Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Overall _Extractable_Petroleum_Hydrocarbons_by_GC (C9_to_C36_Aliphatics;_C11_to_C22_(Aromatic	Comments: _by_Method_MADEP_EPH,_REV_1.1 SS)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Au au au Date: _07/16/2016	

	Criteria were not r	All criteria were metx net and/or see below
I. DATA COMPLETNI A. Data Packaç		
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B. Other		Discrepancies:
		CONTRACTOR OF THE CONTRACTOR O

All criteria were met	X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	DATE	ACTION
	SAMPLED_	EXTRACTED	ANALYZED	
				
Samples	extracted and ar	l	thod recommende	d halding time
Samples	extracted and ar	laiyzeu williiii ille	ulog recommende	a notaling lime
,				

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Crite	All criteria eria were not met and/o	a were metX or see below		
CALIBRAT	IONS VERIFIC	ATION				
Complianc ensure the quantitative	at the instrum	s for satisfactory in ment is capable of	nstrument calibration producing and mai	are established to ntaining acceptable		
Dat	e of initial calib	ration:06/22	/16			
Dat	es of initial calil	oration verification:	06/22/13			
Insi	rument ID num	bers:GCD	E			
Mat	trix/Level:	_AQUEOUS/MEDIUI	M			
DATE	ATE LAB FILE ANALYTE CRITERIA OUT SAMPLES ID# RFs, %RSD, %D, r AFFECTED					
	nitial and conti	nuing calibration me	et method specific requ	uirements		

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the
 average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

Criteria- CCAL

 At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and

- at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:06/22/16	
Dates of continuing calibration verification:0	06/30/15
Dates of final calibration verification:(06/30/16
Instrument ID numbers:GCDE	
Matrix/Level:AQUEOUS/MEDIUM	

DATE	LAB FILE	ANALYTE	CRITERIA OUT	SAMPLES
	ID#		RFs, %RSD, %D, r	AFFECTED
	Initial and conti	nuing calibration me	et method specific requ	uirements
				-

A separate worksheet should be filled for each initial curve

	C	criteria were not n	net and/or see belowX
V A. BLANK ANALYSIS	RESULTS (Se	ctions 1 & 2)	
magnitude of contamination blanks associated with the problems with any blanks evaluated to determine who case, or if the problem is a	n problems. The samples, included exist, all data ether or not the an isolated occurs after samples.	ne criteria for eva uding trip, equipn a associated with ere is an inheren currence not affe es suspected of	determine the existence and luation of blanks apply only to nent, and laboratory blanks. If in the case must be carefully it variability in the data for the cting other data. A Laboratory being highly contaminated to
List the contamination in the separately.	ne blanks belo	w. High and low	levels blanks must be treated
Laboratory blanks			
DATE LAB ID ANALYZED	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			CIFIC CRITERIA_EXCEPT_
06/30/16OP47988-I	MBAqueous	/lowC11-C22	(Aromatics)34.0_ug/L
	•	concentration be ults with a B qual	low the reporting limit. The ifier.
Field/Trip/Equipment			
DATE LAB ID ANALYZED	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_DATA_PACKAGE	FR COS		

All criteria were met	X
Criteria were not met and/or see below_	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met _	_X	
Criteria were not met and/or see below		

. . .

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery Matrix: solid/aqueous

SAMPLE ID	SURROC S1	SATE COMPOL S2	JND S3	S4	ACTION
_SURROGATE	_STANDAF	RDS_RECOVER	RIES_WITH	IN_LABORATO	DRY_CONTROL

S1 = o-Terpher S3 = 1-Chloroo	-			uorobiphenyi romonaphthale	
QC Limits (%)* _LL_to_UL_ QC Limits* (Sol	_40_to_140	40_to_140_	_40_to_	.14040_to_	140_
	to	to	to	to	

Note: No action, % recoveries within laboratory control limits in second column.

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met	
Criteria were not met and/or see belowN/A	_

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

MOMACO Description and Description October

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

Sample ID:			Matrix	/Level:	<u>-</u>
List the %Rs, R	PD of the compounds	which do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
				. <u></u>	

RPD within laboratory control limits. No action taken.

Note: No MS/MSD sample analyzed with this data package. Blank spike/blank spike duplicate used to assess accuracy. % recoveries and

۵

		C	Criteria wer	All criteria we not met and/or s	vere metX see below
No action is taken of informed profession conjunction with oth data. In those insta affect only the samp However, it may be a systematic proble associated samples.	al judgment, the of QC criteria and comments where it comments the comments are the comments and comments are comments.	ne data and dete can be o qualifica ugh the	reviewer r rmine the determined tion should MS/MSD r	may use the MS/ need for some qual that the results the limited to thinesults that the laboration may be sults that the laboration may be supplied to	/MSD results in alification of the of the MS/MSD s sample alone. oratory is having
2. MS/MSD - U	Inspiked Compo	ounds			
List the concentratio compounds in the ur					
COMPOUND	CONCENTRA SAMPLE	ATION MS	MSD	%RPD	ACTION
Criteria: None specif Actions:	ied, use %RSD	≤ 50 as	profession	al judgment.	

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

		All criteria were metX Criteria were not met and/or see below
	VIII.	LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS
matric		ata is generated to determine accuracy of the analytical method for various
	1.	LCS Recoveries Criteria
		List the %R of compounds which do not meet the criteria
LCS II)	COMPOUND % R QC LIMIT ACTION
_LCS	S_REC	OVERY_WITHIN_LABORATORY_CONTROL_LIMTS
	Criteri	Refer to QAPP for specific criteria. The spike recovery must be between 40% and 140%. Lower recoveries of n-nonane are permissible. If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative. RPD between LCS/LCSD must be < 25%.
		s on LCS recovery should be based on both the number of compounds re outside the %R and RPD criteria and the magnitude of the excedance of
the as If the ' for the If more qualify	sociate %R of t affecte than h	the analyte is > UL, qualify all positive results (j) for the affected analyte in d samples and accept nondetects. The analyte is < LL, qualify all positive results (j) and reject (R) nondetects analyte in the associated samples. The analyte in the LCS are not within the required recovery criteria, sitive results as (J) and reject nondetects (R) for all target analyte(s) in the imples.
2.	Freque	ency Criteria:
per ma If no, t the eff	atrix)? <u>Y</u> the data ect and	inalyzed at the required frequency and for each matrix (1 per 20 samples <u>Yes</u> or No. In may be affected. Use professional judgment to determine the severity of a qualify data accordingly. Discuss any actions below and list the samples uss the actions below:

All criteria were met

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX
Criteria were not met and/or see below

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH
 Analyte each time a new GC column is installed, and must be verified
 and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

		Criteria	All were not me		vere met see belov	
2.	If target analytes a laboratory resubmit	nd/or TiCs were not the corrected data.	correctly ide	entified,	request t	hat the
3.	evaluated for potent % recovery of the fr basis by quantifying and aromatic fractionaphthalene or 2-m the total concentra	mination - Each sample ial breakthrough on a stractionation surrogate (anaphthalene and 2-mounts of the LCS and LC althylnaphthalene in the ton must be repeated	ample specification in the spe	fic basis I hthalene alene in t er the c fraction naphtha	by evalua) and on both the a oncentra I exceeds lene in tl	ting the a batch aliphatic tion of 5% of the LCS
	NOTE:	The total concermethylnaphthalene summation of the aliphatic fraction an aromatic fraction.	in the LCS/	/LCSD pa ation de	air includetected	des the
	Comments:Conce _concentration_for_i	ntration_in_the_aliphat naphthalene_and_2-me	ic_fraction_< thylnaphtha	<_5%_of_ lene	_the_total	
	-					
1.	Fractionation Check Standard – A fractionation check solution is prepared containing 14 alkanes and 17 PAHs at a nominal concentration of 200 ng/µl of each constituent. The Fractionation Check Solution must be used to evaluate the fractionation efficiency of each new lot of silica gel/cartridges, and establish the optimum hexane volume required to efficiently elute aliphatic hydrocarbons while not allowing significant aromatic hydrocarbon breakthrough. For each analytic contained in the fractionation check solution, excluding n-nonane, the Percen Recovery must be between 40 and 140%. A 30% Recovery is acceptable for nonane.					
	contained in the fra Recovery must be b					
	contained in the fra Recovery must be be nonane.		A 30% Rec			e for n-

All criteria were met __X___
Criteria were not met and/or see below

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

MC46423-1

EPH (C11 – C22, Aromatics)

RF = 124800

[] = (1965590)/(124800)

[] = 15.75 ppb Ok

MC46423-1

EPH (C19 – C36, Aliphatics)

RF = 77820

[] = (1214579)/(77820)

[] = 15.61 ppb Ok

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION		
	-			
·				

If dilution was not performed, affected samples/compounds:	esults (J) for the	affected	compounds.	List the
	 UNIT WAS			